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Abstract
Rationale Spontaneous (novel) object recognition (SOR) is
one of the most widely used rodent behavioural tests. The
opportunity for rapid data collection has made SOR a
popular choice in studies that explore cognitive impairment
in rodent models of schizophrenia, and that test the efficacy
of drugs intended to reverse these deficits.
Objectives We provide an overview of the many recent
studies that have used SOR to explore the mnemonic effects
of manipulation of the key transmitter systems relevant to
schizophrenia—the dopamine, glutamate, GABA, acetyl-
choline, serotonin and cannabinoid systems—alone or in
combination. We also review the use of SOR in studying
memory in genetically modified mouse models of schizo-
phrenia, as well as in neurodevelopmental and lesion
models. We end by discussing the construct and predictive
validity, and translational relevance, of SOR with respect to
cognitive impairment in schizophrenia.
Results Perturbation of the dopamine or glutamate systems
can generate robust and reliable impairment in SOR.
Impaired performance is also seen following antagonism
of the muscarinic acetylcholine system, or exposure to
cannabinoid agonists. Cognitive enhancement has been
reported using alpha7-nicotinic acetylcholine receptor ago-

nists and 5-HT6 antagonists. Among non-pharmacological
models, neonatal ventral hippocampal lesions and maternal
immune activation can impair SOR, while mixed results
have been obtained with mice carrying mutations in
schizophrenia risk-associated genes, including neuregulin
and COMT.
Conclusions While SOR is not without its limitations, the
task represents a useful method for studying manipulations
with relevance to cognitive impairment in schizophrenia, as
well as the interactions between them.
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Introduction

Schizophrenia is a severe psychiatric disorder with great
social costs for affected individuals and their caregivers, as
well as economic costs for society as a whole. Profound
cognitive deficits are also observed in schizophrenia
(Goldman-Rakic 1994; Owens and Johnstone 2006) and
the severity of these impairments correlates with poor
functional outcome (Green 2006). Despite the clear need,
however, no treatments have yet been approved for
cognitive impairments associated with schizophrenia
(CIAS). In an attempt to address this need, the NIMH-
sponsored ‘Measurement and Treatment Research to Im-
prove Cognition in Schizophrenia’ (MATRICS) initiative
identified seven of the key cognitive domains impaired in
patients, and recommended a battery of neuropsychological
tests that could be used to study them. Given that the drug
discovery process is heavily dependent upon testing rodent
models of impairments in these domains, a ‘preclinical
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MATRICS’ is also required. To this end, Young and
colleagues (2009) recently provided a comprehensive
overview of the existing rodent tasks that might map onto
the cognitive domains identified by MATRICS. The aim of
the present review is to examine in more detail one of the
most widely used of all these tasks, spontaneous object
recognition (SOR).

SOR (sometimes referred to as ‘novel object recognition’,
NOR) is proposed to map onto the MATRICS ‘visual learning
and memory’ domain (Young et al. 2009). SOR exploits the
natural tendency of rodents to explore a novel object more
than a familiar one, and uses this spontaneous behaviour as
an index of memory for a previously presented, and thus
now familiar, object. The use of a spontaneous behaviour
offers many advantages. Lengthy training in rule acquisition
is not required, allowing for rapid data collection. The SOR
task is non-aversive, avoiding confounding effects of stress
on learning and memory, and performance is unaffected by
motivation to work for a food reward. A single cohort of
animals can be tested on multiple occasions using different
sets of objects, making the SOR task well-suited to
pharmacological manipulations that require a within-
subjects design. It is also amenable to investigation of stages
of memory—encoding, consolidation/storage, retrieval—
separately (Nilsson et al. 2007; Winters et al. 2008). These
advantages have made SOR a popular choice in studies that
explore cognitive impairment in rodent models of schizo-
phrenia, and that test the efficacy of drugs intended to
reverse these deficits.

A wealth of evidence has revealed schizophrenia to be a
complex, brain-wide disorder that affects multiple transmitter
systems, which interact in complex ways. As a relatively
straightforward, rapid test of memory, the SOR task may be
well-suited to exploring these interactions. The present review
will therefore summarise findings from studies that have used
SOR to investigate the effects on memory of manipulating
neurotransmitter systems relevant to schizophrenia, and to
cognitive impairments therein. These include the dopamine,
glutamate, GABA, acetylcholine, serotonin and cannabinoid
systems. Given their importance in studying schizophrenia
aetiology, genetic mouse models that have been tested on
SOR, including COMTand neuregulin 1 knockout mice, will
also be described. So too will animal models that attempt to
reproduce the neurodevelopmental nature of schizophrenia,
including maternal immune activation, obstetric complica-
tions and neonatal ventral hippocampal lesions. Finally, the
construct and predictive validity, as well as the translational
relevance, of SORwill be discussed with respect to CIAS. The
present review has focused mainly on recent developments in
the field; for a review of findings prior to 2007, see Dere et al.
(2007). To set these findings in context, however, the origins
of the SOR task used in these studies will first be briefly
summarised.

A brief history of spontaneous object recognition

Impairments in the ability to recognise a previously
encountered object have long been described in human
patients that have sustained damage to the medial temporal
lobes, the best known example being patient H.M. (Scoville
and Milner 1957). Attempts to model these deficits in non-
human primates and then rodents led to the development of
the delayed nonmatching-to-sample (DNMS) task (Gaffan
1974; Mishkin and Delacour 1975; Aggleton et al. 1986;
Rothblat and Hayes 1987; Mumby et al. 1990). In DNMS,
subjects are rewarded for choosing the item that was not
presented to them in the preceding sample phase. Lesion
studies have confirmed the importance of the medial
temporal lobes in mediating this task, although the relative
contribution of the hippocampus and the surrounding
cortical areas, most notably perirhinal cortex, has been a
matter of ongoing debate (see Winters et al. 2008, 2010 for
discussion).

A shift in direction occurred with the realisation that
both primates and rodents display a spontaneous preference
for exploring novel over familiar items, and that this innate
tendency can be used to test memory for a previously
encountered item, without the requirement for additional
reward, or for prolonged training in the nonmatching-to-
sample rule. In the first report of the spontaneous one-trial
object recognition (SOR) task, Ennaceur and Delacour
(1988) described how a rat that had been allowed to explore
two copies of a sample object in an arena would, upon being
returned to that arena 24 h later, prefer to explore a novel
object over a new copy of the sample object. Preference for the
novel object can be expressed quantitatively as a discrimina-
tion ratio (DR), sometimes called a ‘D2 score’ (e.g. Aggleton
et al. 1997), where DR ¼ n� fð Þ= nþ fð Þ, with ‘n’ being
the time spent exploring the novel object, and ‘f’ being the
time spent exploring the familiar object. This measure takes
into account differences between animals in their overall
exploration levels. As with DNMS, performance in SOR has
been reported to be impaired by lesions of rhinal cortex
(Bussey et al. 1999, 2000; Ennaceur et al. 1996), although
not usually by hippocampal damage (Winters et al. 2004;
Forwood et al. 2005; but see e.g. Clark et al. 2000). The
SOR task thus employs the same principle as DNMS, but a
quantitative index of memory can now be obtained in a
single trial.

The value of the SOR task is greatly increased,
however, if multiple trials are run using different
sample-choice intervals (‘delays’). This is because factors
other than memory can affect an animal’s performance
on SOR, including their activity levels, motivation,
perceptual skills and innate novelty preference. By
lengthening the delay, an experimenter can increase the
memory load while leaving these non-mnemonic factors
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largely unchanged.1 To conclude definitively that a
perturbation affects memory selectively one needs, at
minimum, to show that performance is spared at a short
delay. Similarly, if one tests at a single delay and obtains
no effect, it is not appropriate to claim that OR is normal.
Perhaps there is a relatively subtle impairment, or
improvement, that could be revealed by testing at longer
delays. Thus, to support the claim that a perturbation
leaves OR intact, testing at a long delay, which brings
control performance down from ceiling, is required. The
use of multiple delays thus provides an important within-
study control to help confirm that an experimental
manipulation specifically affects recognition memory.

SOR in studying transmitter systems relevant
to cognitive impairment in schizophrenia

Dopamine

The original neurotransmitter system-centred hypothesis of
schizophrenia was the ‘dopamine hypothesis’; the idea that
psychotic symptoms could be attributed to excessive
activation of the dopaminergic system (Carlsson and
Lindqvist 1963). This was based largely on two lines of
evidence: drugs that stimulate endogenous dopamine
release, such as amphetamine, can be psychotomimetic,
while drugs that antagonise D2 receptors are antipsychotic;
their antipsychotic efficacy correlating with their D2
receptor occupancy (Seeman and Lee 1975; Creese et al.
1976; Kapur and Remington 2001). In 1991, this general-
ised dopamine overactivity hypothesis was modified to
account for the negative and cognitive symptoms of
schizophrenia (Davis et al. 1991). Imaging studies had
revealed hypofunction of prefrontal cortex in schizophrenia
patients, accompanied by hypoactivation of D1 receptors,
which appeared to contribute to the cognitive deficits. The
dopamine hypothesis was therefore revised to allow for
differential changes in individual dopaminergic pathways,
each accounting for distinct arrays of symptoms. Thus,
hypofunction of the mesocortical dopamine system may
generate negative symptoms and cognitive impairments,
while hyperactivity of mesolimbic and mesostriatal path-
ways may contribute to positive symptoms.

Stimulation of the dopamine system using methamphet-
amine has long been used to model schizophrenia.
Although the primary focus has been on modelling positive
symptoms, in humans methamphetamine use also induces
cognitive impairments in multiple domains, including
decision making, attention and delayed visuospatial mem-
ory (Scott et al. 2007; Kalechstein et al. 2003). In rodents,
methamphetamine consistently impairs SOR (Table 1). An
acute dose reduced novel object exploration with delays
ranging across studies from 1 h to 24 h (1 h, Herring et al.
2008; 1.5 h and 24 h, Schroder et al. 2003; 1.5 h, Belcher et
al. 2008; 2 h, Camarasa et al. 2010). However, subchronic
methamphetamine impaired SOR with a 24-h delay (Kamei et
al. 2006; Noda et al. 2010) but had no effect with a 1-h delay
(Kamei et al. 2006). Repeated methamphetamine exposure is
believed to trigger pharmacodynamic adaptations that atten-
uate the drug’s deleterious effects. Consistent with this, rats
that had been exposed to an escalating dose regime were
unimpaired in SOR with delays of 3, 4 or 24 h (Clark et al.
2007), and were less impaired following a subsequent acute
dose than previously drug-naïve animals (90 min; Belcher et
al. 2008). Rats that had repeatedly self-administered meth-
amphetamine, however, were impaired with a delay of either
90 min or 24 h (Reichel et al. 2011). Unfortunately, none of
the methamphetamine studies assessed performance using a
delay of less than 1 h; the extent to which the observed
impairments reflect specific effects on memory is thus
unknown.

Methamphetamine has been shown to reduce radioligand
binding of dopamine and the dopamine reporter DAT in the
striatum, as well as serotonin and the serotonin transporter
SERT in the hippocampus and perirhinal cortex (Schroder et
al. 2003; Herring et al. 2008; Belcher et al. 2008). The
effects of methamphetamine may also impinge upon the
glutamatergic and cholinergic systems: a methamphetamine-
induced deficit could be rescued by pretreatment with the
NMDA and α7-nicotinic acetylcholine receptor (α7-nAChR)
antagonist, memantine (2 h, Camarasa et al. 2010), although
the mechanism behind this effect is unknown. The mGluR5
positive allosteric modulator CDPPB also reversed a
methamphetamine-induced deficit with a delay of 90 min,
but not 24 h (Reichel et al. 2011) (see ‘Metabotropic
glutamate receptors’).

Dopamine receptors are metabotropic G protein-coupled
receptors, which are divided into two groups: D1-like (D1
and D5) and D2-like (D2, D3, D4). Systemic administration
of the D1 antagonist SCH23390 prior to daily metham-
phetamine administration abolished the deleterious effects
of methamphetamine on SOR, while the D2 antagonist
raclopride had no effect (Kamei et al. 2006). The same
group found that microinjection of a D1 antagonist
bilaterally into prefrontal cortex (PFC) also impaired SOR
with a 24-h delay, although not with a 1-h delay (Nagai et

1 There is evidence to suggest that the same structures within the
temporal lobe mediate both memory for objects and perceptual
discrimination between them (e.g. Cowell et al. 2006; Bussey and
Saksida 2005). Thus, perirhinal cortex lesions impair SOR at longer
but not shorter delays when standard objects are used, but when
perceptually similar objects are used such lesions can produce
impairments when there is little or no delay (Bartko et al. 2007).
Nevertheless, short delays should be included in experiments using
standard objects to rule out gross perceptual (e.g. visual acuity)
deficits as a possible reason for impairment at longer delays.
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al. 2007). Kamei and colleagues propose that exposure to a
novel object may typically activate D1 receptors in PFC,
leading ultimately, via activation of the ERK1/2 signalling
pathway (Zanassi et al. 2001), to protein synthesis required
for the consolidation of long-term, but not short-term,
recognition memory. Subchronic methamphetamine may
induce overstimulation of PFC D1 receptors, leading to
downregulation of the ERK1/2 signalling pathway and
impaired SOR.

The fact that selective delivery of a D1 antagonist into
PFC impaired SOR may appear surprising, given that PFC
lesions have little effect on SOR in rats (15 min, Ennaceur
et al. 1997; 24 hr, Mitchell and Laiacona 1998; 105 min,
Hannesson et al. 2004), although they are thought to impair
recency judgments (Mitchell and Laiacona 1998; Hannesson
et al. 2004). Nevertheless, it has also been suggested that
increased PFC dopamine and/or acetylcholine release may
underpin the improvements in SOR induced by the D3
antagonist S33138 (4 h; Millan et al. 2008, 2010) and the D4
receptor agonist A-412997 (24 h; Woolley et al. 2008). Since
both of these drugs were given systemically, their effect on
SOR may well have been mediated outside the PFC (see
Beaulieu and Gainetdinov 2011), although the D4 agonist
had no effect on hippocampal noradrenaline or acetylcho-
line release. Another D4 agonist, PD168077, also im-
proved SOR with a 6-h delay, and reduced the impairment
induced by subchronic treatment with the NMDA receptor
antagonist, phencyclidine, with a 1-min delay (Sood et al.
2010). The D4 receptor has been implicated in novelty-
seeking (Ebstein et al. 1996) and D4 expression/function
may be altered in schizophrenia (Seeman et al. 1993; Lung
et al. 2009). Whether D4 agonists/D3 antagonists would
enhance human recognition memory, however, remains to

be determined. Despite similarities between the D2 and
D3 receptor, the D2 antagonist raclopride had no effect on
SOR with delays of 1 or 24 h (Kamei et al. 2006; Nagai et
al. 2007). While raclopride did appear to impair SOR with
a 1-min delay, impaired performance was seen at doses that
also reduced both sample and choice phase exploration
(Woolley et al. 2003), arguing against a specific effect on
memory.

Glutamate

After dopamine, the neurotransmitter at the forefront of
most schizophrenia research has likely been glutamate (see
e.g. Coyle 2006 for review). Glutamate binds to two classes
of receptors: ionotropic and metabotropic. Ionotropic
receptors are ligand-gated ion channels, which are sub-
divided into three families: NMDA, AMPA and kainate
receptors. NMDA receptor antagonists are psychotomimetic
in healthy individuals, inducing symptoms such as altered
perception, thought disorder and impaired cognition (Krystal
et al. 1994; Adler et al. 1999). NMDA receptor antagonists
also worsen symptoms in existing schizophrenia patients
(Lahti et al. 1995). These effects are believed to result from a
disinhibition of glutamate release following blockade of
NMDA receptors on GABAergic interneurons (Greene
2001). Many of the most promising candidate schizophrenia
susceptibility genes interact with the glutamatergic system
(Harrison and Weinberger 2005) and there is some evidence
from post-mortem studies, as well as brain imaging, for
NMDA receptor hypofunction in schizophrenia. Pharmaco-
logical challenge with either acute or subchronic administra-
tion of an NMDA receptor antagonist is one of the most
widely used animal models of schizophrenia, particularly for

Table 1 Effects of methamphetamine on SOR

Methamphetamine
dosing regime

Species and strain Delay Effect on SOR Reference

Acute S-D rat 1.5 h, 24 h Impaired Schroder et al. 2003

Acute S-D rat 1 h Impaired Herring et al. 2008

Acute L-E rat 2 h Impaired. Impairment reduced by memantine Camarasa et al. 2010

Acute/escalating
dose followed
by acute challenge

S-D rat 1.5 h Impaired. Exposure to escalating dose regime reduced the
deleterious effects of the acute challenge

Belcher et al. 2008

Escalating dose S-D rat 3 h, 4 h, 24 h No significant effect Clark et al. 2007

Self-administered L-E rat 1.5 h, 24 h Impaired. 1.5 h, but not 24 h, impairment reduced by CDPPB
(mGluR5 PAM)

Reichel et al. 2011

Subchronic ICR mouse 24 h Impaired. Impairment reduced by galantamine but not by
donepezil

Noda et al. 2010

Subchronic ICR mouse 1 h, 24 h Impaired with 24 h, but not 1 h, delay Kamei et al. 2006
Impairment reduced by clozapine or SCH 23390 (D1 antagonist)

Haloperidol and raclopride (D2 antagonist) had no effect

L-E Long Evans, S-D Sprague Dawley, PAM positive allosteric modulator
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modelling negative symptoms and cognitive deficits.
Addressing whether and how the induced deficits can be
reversed using other pharmacological agents is, in turn, one
of the most popular uses of the SOR task.

NMDA receptor antagonists may be either competitive—
competing with the endogenous ligand for access to the
binding site, for example AP5—or uncompetitive, binding to
a site within the open NMDA receptor channel, for example
ketamine, MK-801 or phencyclidine. AP5 has been shown to
selectively impair SOR performance when relatively long
delays are used (although see Puma and Bizot 1998 in which
intra-septal infusion improved SOR with a 24-h delay, but
had no effect with a 45-min delay). Pre-sample intra-
hippocampal infusion impaired SOR with a delay of 3 h,
but not with a delay of 5 min (Baker and Kim 2002). The
same result was obtained using pre-sample intra-perirhinal
cortex infusion (Winters and Bussey 2005a). In both cases,
the intact performance with the shorter delay argues against
non-specific actions of the drug on perception, motivation or
novelty preference. Pre-sample intra-perirhinal cortex AP5
additionally impaired SOR with a 25-min delay (Abe et al.
2004). When AP5 was infused into the perirhinal cortex
post-sample, it impaired SOR with a 180-min delay, but had
no effect when infused immediately prior to the choice phase
(Winters and Bussey 2005a). This suggests a role for
NMDARs in the activity-dependent plasticity required for
encoding and consolidation of long-term recognition mem-
ory, but not for retrieval. Due to the motoric side-effects that
can often accompany AP5, however, as well as its reported
inability to cross the blood–brain barrier, more recent studies
have tended to use the uncompetitive antagonists, which will
thus be described in more detail.

MK-801

Consistent with data from AP5 studies, systemic pre-
sample MK-801 impaired SOR in both rats and mice
with a delay of 1.5 h or 24 h (de Lima et al. 2005;
Nilsson et al. 2007). This implies an essential role for
NMDARs in object memory acquisition. An impairment
was also seen at both delays in rats with post-sample MK-
801 (de Lima et al. 2005), which would support NMDAR
involvement in consolidation. Conversely, Nilsson et al.
(2007) observed no effect of post-sample MK-801 using a
26-h delay, and enhanced performance with a 1.5-h delay.
The reason for this discrepancy is unclear, but may reflect
species differences, or at least the particular strain of mice
used by Nilsson and colleagues. The vehicle-treated
NMR1 mice consistently displayed a relatively weak
novelty preference, which may potentially have led to
floor effects.

Several putative cognitive enhancers have been shown to
reduce the deficit in SOR induced by pre-sample MK-801:

an α7-nicotinic acetylcholine receptor (α7-nAChR) agonist
improved performance with a 1-h delay (Roncarati et al.
2009), as did an mGluR5 positive allosteric modulator
(PAM) with a 24-h delay (Uslaner et al. 2009). A glycine
transporter (GlyT1) inhibitor and D-serine each rescued an
MK-801-induced impairment with a 2-h delay (Karasawa et
al. 2008), while D-serine was also effective with a 24-h delay
(Smith et al. 2009b). Glycine and D-serine are ligands for the
glycine modulatory site (GMS); a site on the NMDA
receptor that must be occupied if glutamate is to be able to
open the channel. Increased activation of the GMS may offer
the possibility of selectively enhancing phasic NMDA
receptor activation, whilst avoiding the increase in tonic
activation that would risk excitotoxicity. GMS (partial)
agonists are thus being investigated as potential adjunctive
therapies in schizophrenia. While mice that lacked the
synthetic enzyme for D-serine were not impaired in SOR
with a 1-min delay (Devito et al. 2010), mice that lacked
GlyT1 in forebrain neurons showed better SOR performance
than wild-type controls with a 2-h delay (Singer et al. 2007).
Importantly, the GlyT1 knockout mice did not show
enhanced performance with a 2-min delay, increasing
confidence that the improvement seen after 2 h reflects a
specific effect on memory.

Phencyclidine (PCP)

Subchronic PCP is one of the most widely used pharma-
cological models of negative symptoms and cognitive
impairment in schizophrenia. PCP induces robust deficits
in SOR with delays as short as 1 min (Grayson et al. 2007;
McLean et al. 2009; Snigdha et al. 2010; Sood et al. 2010;
Damgaard et al. 2011; Arnt et al. 2010) (but see Hashimoto
et al. 2005). This does mean, however, that effects on
memory versus those on perceptual or motivational factors
can be difficult to disentangle.

PCP-induced SOR deficits can be reversed by com-
pounds that target many different transmitter systems
(Table 2). Clozapine and risperidone, but not haloperidol,
each reduced PCP-induced deficits when a 1-min delay was
used (Grayson et al. 2007). Clozapine also rescued
performance with a 1-h delay (Vigano et al. 2009), although
risperidone had no effect with this sample-choice interval
(McKibben et al. 2010). It has been suggested that an
increase in dopamine release may constitute one possible
mechanism for reversing PCP-induced impairments. Consis-
tent with this hypothesis, the putative novel antipsychotic
asenapine rescued a PCP-induced deficit with a 1-min delay;
the rescue effect could be blocked by a D1 antagonist but not
by a 5-HT1A antagonist (Snigdha et al. 2010). Asenapine has
been shown to increase mPFC and hippocampal dopamine
release (Huang et al. 2008; Franberg et al. 2009). I-SPD-A,
another putative antipsychotic with D1 agonist/5-HT1A
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partial agonist/D2 antagonist efficacy, also rescued a PCP-
induced deficit with a 24-h delay (Guo et al. 2009). So too
did aripiprazole, acting via a D1/5-HT1A-dependent mech-
anism (Nagai et al. 2009). These groups propose that
activation of 5-HT1A receptors induces PFC dopamine
release, which then rescues SOR performance. The mecha-
nism by which this rescue effect might occur, however, is
unclear. It should also be noted that the effects of these
compounds are unlikely to be limited to the dopaminergic
system. Aripiprazole additionally increased serotonin release
in rat mPFC (Bortolozzi et al. 2007), while asenapine
increased release of both noradrenaline and acetylcholine in
mPFC and hippocampus (Huang et al. 2008).

Consistent with an interaction between the cholinergic
and dopaminergic systems, a D1 receptor agonist that
rescued a PCP-induced SOR deficit (1 min; McLean et al.

2009) has previously been shown to increase hippocampal
acetylcholine release (Hersi et al. 1995). Upregulation of
cholinergic activity may attenuate the effects of PCP on
SOR. Thus, an α7-nAChR agonist reduced a PCP-induced
SOR impairment with a delay of 90 min (Pichat et al. 2007)
or 24 h (Hashimoto et al. 2008). The choline-uptake
inhibitor, MKC-231, also reduced a PCP-induced deficit
with a 24-h delay (Shirayama et al. 2007), as did the
cholinesterase inhibitor, donepezil; the weaker cholinester-
ase inhibitor, physostigmine, however, was ineffective
(Kunitachi et al. 2009). If increased acetylcholine and
dopamine release attenuate PCP-induced deficits, this may
account for the beneficial effect of the 5-HT6 antagonist,
Lu AE58054 (1 min; Arnt et al. 2010). 5-HT6 receptors are
heteroreceptors, thought to modulate the release of multiple
transmitters including dopamine, glutamate and acetylcho-

Table 2 Results from studies that have administered pharmacological agents (listed in column 1) in an attempt to reverse subchronic PCP-
induced SOR impairments

Agent administered in an
attempt to reverse PCP-
induced SOR impairment

Species and strain Delay Effect on PCP-induced SOR impairment Reference

Haloperidol L-H rat 1 min No significant effect Grayson et al. 2007
Clozapine Reduced

Risperidone Reduced

Haloperidol ICR mouse 24 h No significant effect Nagai et al. 2007

Aripiprazole Reduced. Rescue effect blocked by SCH 23390
(D1 antagonist) or WAY100635 (5-HT1A
antagonist), but not by raclopride (D2 antagonist)

SKF-38393 (D1-like receptor agonist) L-H rat 1 min Reduced McLean et al. 2009

I-SPD-A (D1 agonist/D2 antagonist/
5-HT1A partial agonist)

S-D rat 24 h Reduced Guo et al. 2009

Clozapine Reduced

Asenapine L-H rat 1 min Reduced. Rescue effect blocked by SCH 23390
but not by WAY100635

Snigdha et al. 2010

Risperidone (subchronic) L-H rat 1 h No significant effect McKibben et al. 2010

Clozapine L-H rat 1 h Reduced Vigano et al. 2009
Δ9-tetrahydrocannabinol (THC) worsened the
PCP-induced impairment

MKC-231 (choline uptake inhibitor) S-D rat 24 h Reduced Shirayama et al. 2007

SSR180711 (α7-nAChR agonist) ICR mouse 24 h Reduced Hashimoto et al. 2008

SSR180711 (α7-nAChR agonist) S-D or Wistar rat 1.5 h Reduced Pichat et al. 2007

PNU-282987 (α7-nAChR agonist) L-H rat 1 min Reduced McLean et al. 2011

Donepezil ICR mouse 24 h Reduced Kunitachi et al. 2009
Physostigmine No significant effect

PD168077 (D4 agonist) Rat 1 min Reduced Sood et al. 2010

CX546 (AMPAkine) L-H rat 1 min Reduced Damgaard et al. 2010
CX516 (AMPAkine) Reduced

Gaboxadol [extrasynaptic GABA(A)
receptor agonist]

L-H rat 1 min Reduced Damgaard et al. 2011

AA29504 [positive modulator of
extrasynaptic GABA(A) receptors]

Reduced

Lu AE58054 (5-HT6 antagonist) S-D rat 1 min Reduced Arnt et al. 2010

L–H Lister Hooded, S-D Sprague Dawley
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line indirectly via a reduction in GABAergic tone (Marcos
et al. 2006). Conversely, upregulation of GABAergic
transmission has also been shown to reverse the effects of
PCP, again with a 1-min delay (Damgaard et al. 2011). This
is consistent with the increasing evidence suggesting that
many of the deleterious effects of NMDA receptor
antagonists may actually result from disinhibition of
glutamatergic transmission (see ‘GABA’).

Memantine

An exception to the rule that NMDA receptor antagonism
impairs SOR, the dual NMDA receptor and α7-nAChR
antagonist, memantine, reduced a methamphetamine-induced
SOR impairment with a 2-h delay (Camarasa et al. 2010). The
mechanism behind this effect is unknown but may involve
an anxiolytic action. Memantine also improved the SOR
performance of 2-year-old rats with a 24-h delay, but not
with a 1.5-h delay, as well as reducing oxidative stress
damage to proteins in the hippocampus and PFC (Pietá Dias
et al. 2007). Again, the mechanism behind the improvement
in SOR is unclear. Pieta-Dias and colleagues suggest that
oxidative stress damage triggered by NMDA receptor
overstimulation may contribute to cognitive decline in
normal ageing, with memantine able to reduce this damage.
When memantine was given to young healthy adults,
however, it actually impaired recognition memory for line
drawings of objects (Rammsayer 2001). In schizophrenia
patients, memantine has had little effect on cognition (Krivoy
et al. 2008; Lieberman et al. 2009), although effects on
recognition memory per se have yet to be studied.

Metabotropic glutamate receptors (mGluRs)

Metabotropic glutamate receptors (mGluRs) are G protein-
coupled receptors, which are pharmacologically and struc-
turally classified into three groups: I, comprising mGluR1
and 5; II, mGluR2 and 3; and III, mGluR4, 6, 7 and 8.
Activation of group I/II mGluRs within perirhinal cortex
may be required for the encoding of long-term recognition
memory. Pre-sample intra-perirhinal co-infusion of MPEP
(a group I, preferentially mGluR5, antagonist) and
LY341495 (a group II mGluR antagonist) impaired SOR
with a 24-h delay (Barker et al. 2006). Performance was
unimpaired with a 15-min delay, making it unlikely that
non-specific changes in perception, alertness or attention
could explain the 24-h deficit. Post-sample or pre-choice
co-administration of the group I/II antagonists had no
effect, suggesting that mGluRs are required specifically for
memory acquisition/encoding, rather than later-acting con-
solidation mechanisms. Administration of either drug alone
was also without effect. Reductions in neuronal firing
within perirhinal cortex may signal the relative familiarity

of stimuli (Brown and Xiang 1998; Warburton et al. 2003).
These reductions in neuronal activity may occur via
mGluR-dependent long-term depression (LTD) (Brown
and Bashir 2002).

Pharmacological manipulation of mGluRs may offer the
possibility of cognitive enhancement. An mGluR5 PAM
reversed the deleterious effects of methamphetamine with a
delay of 90 min, but not 24 h (Reichel et al. 2011). Given
that methamphetamine also reduced mGluR5 expression in
perirhinal cortex, Reichel and colleagues propose that
mGluR5 upregulation may compensate for this reduction
and restore mGluR5-dependent LTD. Other mGluR5 PAMs
have been shown to facilitate SOR with a delay of 24 h (Liu
et al. 2008; Uslaner et al. 2009), possibly via enhanced
NMDA receptor-dependent synaptic plasticity. Consistent with
this observation, an mGluR5 PAM and an mGluR5 agonist
each reduced ketamine-induced deficits with a 24-h delay
(Chan et al. 2008). The mGluR2/3 agonist, LY379268, may
also have cognitive enhancing potential. LY379268 improved
SOR when a 4-h delay was used (Jones et al. 2010). It also
rescued the impairment in SOR induced by isolation rearing
(2-h delay). Unfortunately, however, LY379268-treated
group-housed animals did not show significant novel object
preference, making the results more difficult to interpret. An
mGluR2/3 agonist prodrug is currently undergoing phase II
clinical trials as a novel antipsychotic agent (Patil et al. 2007),
but the effects of this drug on human cognition are as yet
unknown.

GABA

NMDA receptors expressed on GABAergic interneurons
are more sensitive to NMDA receptor antagonists than are
their pyramidal cell equivalents. Increasing evidence sug-
gests that many of the deleterious effects of NMDA
receptor antagonists may, in fact, result from a reduction
in the firing of inhibitory interneurons (Grunze et al. 1996)
and the consequent increase in pyramidal cell firing
(Jackson et al. 2004). Seemingly consistent with this,
schizophrenic patients have been shown to display in-
creased brain metabolic activity that is predictive of
cognitive impairment (Friston et al. 1992; Malaspina et al.
2004; Heckers et al. 1998), while a group II mGluR
agonist, which inhibits glutamate release, is able to reverse
working memory impairments induced by PCP (Moghaddam
and Adams 1998).

A reduction in the expression of parvalbumin and of the
GABA synthetic enzyme, glutamic acid decarboxylase
(GAD), is well-documented in schizophrenia (Woo et al.
1997; Lewis et al. 2005; Zhang et al. 2002). There is also
evidence for reduced expression in PFC of several GABA
(A) receptor subunits, including components both of
synaptic receptors (which mediate phasic inhibition) and
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extrasynaptic receptors (tonic inhibition) (Hashimoto et al.
2008). Upregulation of extrasynaptic GABA(A) receptor
function was found to reduce the impairment in SOR
induced by subchronic PCP with a 1-min delay (Dam-
gaard et al. 2011), suggesting that upregulation of tonic
inhibition may be therapeutically beneficial. However, mice
with increased GABA(A) receptor accumulation at postsyn-
aptic inhibitory synaptic specialisations on CA3 pyramidal
neurons displayed unaltered SOR performance with a 24-
h delay (Tretter et al. 2009). Mice overexpressing the GABA
transporter GAT1 were impaired in SOR with delays of 1 h
or 24 h (Hu et al. 2004). Since these mice were also
significantly impaired at a zero delay compared to wild-type
littermates, at least some of this deficit is likely to have been
non-mnemonic in origin.

Acetylcholine

While dysfunction of neocortical and hippocampal cholin-
ergic neurotransmission has traditionally been associated
with cognitive impairment in Alzheimer’s disease (AD),
there is some evidence that perturbations of cholinergic
function, mediated either by muscarinic acetylcholine
receptors (mAChRs) or by nicotinic receptors (nAChRs),
may also contribute to impaired cognition in schizophrenia
(see Raedler et al. 2007 for review). Moreover, although the
cholinergic system is not considered to be clozapine’s
principle target, the drug’s major metabolite does trigger
increased release of both acetylcholine and dopamine via
agonist actions at mAChRs (Li et al. 2008).

Muscarinic AChRs (ChRMs)

An M1 preferring agonist improved SOR performance with
a 2- or 24-h delay (Bradley et al. 2010; Johnson et al.
2010). Conversely, pre-sample administration of the mus-
carinic receptor antagonist scopolamine reliably impaired
SOR with delays ranging across studies from 1 min to 24 h
(1 min, Woolley et al. 2003; 15 min, De Bruin and Pouzet
2006; 60 min, Hirst et al. 2008 and Boultadakis et al. 2010;
180 min, Ballaz et al. 2007; 90 min and 24 h, Botton et al.
2010). Pre-sample infusion of scopolamine directly into
perirhinal cortex also impaired SOR (20 min, Warburton et
al. 2003; 25 min, Abe et al. 2004; 24 h, Winters et al.
2006), as did selective lesions of the cholinergic basal
forebrain input to perirhinal cortex (15 min; Winters and
Bussey 2005b). The effects of post-sample scopolamine
infusion are more complex (Warburton et al. 2003; Winters
et al. 2006) but, overall, the data suggest that cholinergic
transmission may influence object memory acquisition/
encoding rather than consolidation.

Scopolamine has been shown to impair cognitive
performance in healthy human subjects and to worsen

existing cognitive deficits in schizophrenia (Minzenberg et
al. 2004). These effects are generally considered to reflect
deleterious effects on attention, however (Jones and
Higgins 1995; Sarter and Bruno 1997). Given that
activation of the cholinergic system may also contribute to
the fine-tuning of receptive fields (Rasmusson 2000), it is
possible that some of the disruptive effects of scopolamine
on SOR may likewise reflect altered perception and/or
attention. However, there is evidence that cortical acetyl-
choline may contribute to synaptic plasticity processes.
Activation of cholinergic receptors in vitro induced an
NMDA receptor-independent form of LTD (Massey et al.
2001). Intra-perirhinal infusion of scopolamine disrupted
the reduction in neuronal activity that typically occurs in
this region in response to repeated presentation of visual
stimuli, and also blocked LTD induction in perirhinal slices
(Warburton et al. 2003). This would appear to suggest that
cholinergic transmission within perirhinal cortex may play
a direct role in object memory encoding, and that this
process may be disrupted by scopolamine.

Scopolamine-induced impairments in SOR can be
reversed by a diverse array of compounds acting via many
different receptors and transmitter systems. These include
cholinesterase inhibitors, such as donepezil (6 h; Sambeth
et al. 2007) and galantamine (15 min; De Bruin and Pouzet
2006). The serotonergic system can also regulate choliner-
gic transmission (Shirazi-Southall et al. 2002; Steckler and
Sahgal 1995). A 5-HT6 antagonist reversed the effects of
scopolamine (1 min; Woolley et al. 2003) as did the 5-HT1A
antagonist, WAY-101405 (Hirst et al. 2008). WAY-101405
rescued a scopolamine-induced impairment with a 1-h delay
and increased hippocampal acetylcholine release; a low dose
also significantly improved SOR with a 48-h delay when co-
administered with a low dose of donepezil. The nitric oxide-
releasing agent NCX 2057 reversed a scopolamine-induced
SOR deficit with a 1-h delay (Boultadakis et al. 2010), again
possibly via potentiated acetylcholine release (Prast and
Philippu 2001). Lastly, caffeine reversed the deleterious
effects of scopolamine at both 90-min and 24-h delays
(Botton et al. 2010). Caffeine has previously been shown to
increase cholinergic transmission via antagonism of adeno-
sine A1 and A2A receptors (Van Dort et al. 2009). In
humans, caffeine attenuated the deleterious effects of
scopolamine on free recall (Riedel et al. 1995) while chronic
caffeine consumption may reduce cognitive decline in AD
(Maia and de Mendonca 2002; Ritchie et al. 2007), although
its effects in schizophrenia are unknown.

Many of these compounds are likely to act upon
more than one target, and to affect multiple transmitter
systems to differing degrees. The cholinesterase inhib-
itor, galantamine, for example, is also an α7-nAChR
PAM (Albuquerque et al. 1997). Galantamine, but not
donepezil, reduced a methamphetamine-induced SOR
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impairment with a 24-h delay (Noda et al. 2010). The
rescue effect was accompanied by increased PFC dopamine
release, and could be blocked by a D1 receptor antagonist or
by mecamylamine—a nAChR antagonist that also prevented
the increase in dopamine levels.

Nicotinic AChRs (nAChRs)

Schizophrenia and the nicotinic acetylcholine system are
closely linked. More than 80% of schizophrenia patients
smoke tobacco, compared to approximately 25% of the
general population (de Leon and Diaz 2005), with smoking
often beginning in the prodromal phase of the disorder,
prior to full symptom onset (Weiser et al. 2004). The
genetic locus of the α7-nAChR subunit, 15q14, has been
repeatedly linked to schizophrenia (Freedman and Leonard
2001; Freedman et al. 2001; Leonard et al. 1998; Stober et
al. 2000; Riley et al. 2000), while expression of CHRNA7,
the gene encoding the α7-nAChR subunit, is reduced in
post-mortem tissue from patients (Freedman et al. 1995;
Marutle et al. 2001). The α7-nAChR receptor has been
chosen as a major target for drug development by
MATRICS (Bromley 2005).

A number of different α7-nAChR receptor agonists have
been shown to improve performance in SOR (Table 3). The
majority of these studies used only a 24-h delay (Wishka et
al. 2006; Boess et al. 2007; Hauser et al. 2009; Hashimoto
et al. 2008), although improvements were also seen at
15 min (Sydserff et al. 2009) and 48 h (Wallace et al. 2011).
Pichat and colleagues (2007) observed improved SORwith a
24-h delay in rats and a 48-h delay in mice. While the precise
mechanism by which α7-nAChR receptor agonists enhance

SOR performance is unclear, activation of α7-nAChR
receptors in vitro and in vivo has been shown to increase
extracellular concentrations of multiple transmitters and
modulators, including glutamate, acetylcholine and dopamine
(Radcliffe and Dani 1998; Biton et al. 2007).

The partial α7-nAChR agonist, SSR180711, for exam-
ple, improved SOR in rats with a 24-h delay and increased
extracellular dopamine levels (albeit this was measured
only in the PFC which, as discussed above, is not thought
to be necessary for normal SOR performance). The increase
in dopamine was blocked by the α7-nAChR antagonist,
MLA (Pichat et al. 2007). Another α7-nAChR agonist,
AZD0328, improved SOR in mice with a 15-min delay, and
increased both extracellular PFC dopamine and the excit-
ability of midbrain dopaminergic ventral tegmental area
neurons in rats (Sydserff et al. 2009).

Upregulation of α7-nAChR function has also been
shown to reverse the deleterious effects of NMDA receptor
antagonism on SOR. Acute treatment with the α7-nAChR
agonist, PNU-282987, reversed a subchronic PCP-induced
impairment seen with a 1-min delay (McLean et al. 2011),
while subchronic, but not acute, treatment with SSR180711
reversed an impairment with a 24-h delay (Hashimoto et al.
2008). Acute SSR180711 also reversed the effects of an
acute PCP challenge in rats that had previously been
exposed to subchronic PCP (90 min; Pichat et al. 2007).
Furthermore, α7-nAChR agonism reversed the effects of
MK-801 with a 1-h delay (Roncarati et al. 2009; Pichat et
al. 2007). The rescue effect occurred even when MK-801
and the α7-nAChR agonist were co-administered immedi-
ately after the sample phase. This suggests that α7-nAChR
activation may help to counter the deleterious effects of

Table 3 α7-nicotinic acetylcholine receptor agonists have been shown to improve SOR performance and to reduce the deleterious effects of
scopolamine, MK-801 and PCP

α7-nAChR agonist Species and strain Delay Effect on SOR Reference

PHA-543,613 S-D rat 24 h Improved Wishka et al. 2006

ABBF OF1 mouse 24 h Improved Boess et al. 2007

SSR180711 S-D or Wistar rat 24 h Improved Pichat et al. 2007
1 h Reduced MK-801-induced impairment

1.5 h Reduced subchronic PCP-induced impairment

C57Bl/6 J mouse 48 h Improved performance in wt, but not α7-nAChR ko, mice

AZD0328 C57Bl/6 mouse 15 min Improved performance in wt, but not α7-nAChR ko, mice Sydserff et al. 2009

TC-5619 S-D rat 24 h Improved Hauser et al. 2009

RG3487 S-D rat 48 h Improved Wallace et al. 2011

SEN12333 Wistar rat 24 h Improved Roncarati et al. 2009
4 h Reduced scopolamine-induced impairment

L-E rat 1 h Reduced MK-801-induced impairment.

SSR180711 ICR mouse 24 h Reduced subchronic PCP-induced impairment Hashimoto et al. 2008

PNU-282987 L-H rat 1 min Reduced subchronic PCP-induced impairment McLean et al. 2011

S-D Sprague Dawley, L-H Lister Hooded, wt wild-type, ko knockout
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NMDA receptor antagonism on object memory consolidation.
Overall, therefore, it is clear that modulation of the cholinergic
system can affect SOR via interaction with several other
transmitter systems. A more general discussion of these
interactions is beyond the scope of this review, but has been
provided by Levin and colleagues (e.g. Levin and Rose 1995;
Levin and Simon 1998; Levin and Rezvani 2006).

One final interaction should also be considered: the α7-
nAChR shares significant sequence homologywith the 5-HT3
receptor (Macor et al. 2001). While a 5-HT3 receptor
antagonist did not affect SOR performance (Wallace et al.
2011), it is possible that some of the cognitive enhancing
effects of ‘α7-nAChR agonists’ could occur via modulation
of 5-HT3 receptors. However, α7-nAChR agonists did not
improve SOR in α7-nAChR knockout mice (Pichat et al.
2007; Sydserff et al. 2009), and their effects could be
blocked by selective α7-nAChR antagonists (e.g. Boess et
al. 2007; Pichat et al. 2007; Hashimoto et al. 2008; Roncarati
et al. 2009; Wallace et al. 2011). Nevertheless, this example
illustrates the importance of considering potential off-target
drug effects.

Serotonin

Dysfunction of serotonergic PFC circuitry may contribute
to the cognitive deficits observed in schizophrenia, partic-
ularly due to the involvement of this circuitry in cognitive
flexibility and impulsivity (e.g. Robbins 2005). Atypical
antipsychotics increase release of acetylcholine and dopa-
mine in PFC via 5-HT1A-dependent mechanisms, and this
has been proposed to enhance cognition, particularly
attentional processing, in schizophrenia (Rollema et al.
1997; Ichikawa et al. 2002; Diaz-Mataix et al. 2005;
McCreary et al. 2007). On the other hand, the large,
independent ‘Clinical Antipsychotic Trials of Intervention
Effectiveness’ (CATIE) study did not find any evidence for
superior cognitive enhancing effects of atypical antipsy-
chotics over the first-generation drug, perphenazine (Keefe
et al. 2007).

The 5-HT1A antagonists WAY 100635 or WAY 100405
reversed the deleterious effects of scopolamine on SOR
with a 60-min delay, and enhanced the performance of
drug-naive rats with a 24- or 48-h delay (Hirst et al. 2008;
Pitsikas et al. 2003). Pitsikas and colleagues found that
WAY 100635 improved SOR when administered pre-
sample, post-sample or 30 min pre-choice, implying an
effect of the drug on acquisition, consolidation and possibly
retrieval (Pitsikas et al. 2003). The fact that an improve-
ment was seen using post-sample administration reduces
the likelihood that the drug acts solely to enhance
attentional processes. In addition, WAY 100635 reversed
the deleterious effects of the AMPA receptor antagonist
NBQX on SOR with a 3-h delay (Schiapparelli et al. 2006).

This finding is consistent with previous suggestions that
5-HT1A antagonists may, by blocking the hyperpolarising
actions of endogenous 5-HT on pyramidal neurons, compen-
sate for a reduction in excitatory glutamatergic (or cholinergic)
input (Dijk et al. 1995; Carli et al. 1997).

5-HT6 receptors are another promising target for
reversing cognitive impairment in schizophrenia (see e.g.
Mitchell and Neumaier 2005). Multiple studies have shown
them to improve SOR with delays ranging from 1 min
(Woolley et al. 2003) to 4 h (King et al. 2004; 2009;
Kendall et al. 2011; Schreiber et al. 2007) to 24 h or more
(Singer et al. 2009; Hirst et al. 2006; Haydar et al. 2010;
although see Lieben et al. 2005) (Table 4). Some 5-HT6
antagonists induce hypophagia (Bentley et al. 1999;
Woolley et al. 2000), which would confound interpretation
of operant tasks motivated by food rewards. SOR is thus a
particularly appropriate task for studying the effects of
these drugs. Unfortunately, the majority of studies to date
have examined only a single delay, making it difficult to
exclude the possibility that non-mnemonic factors may
have contributed to the enhanced performance. One
exception is the study by King et al. (2009), which revealed
that 5-HT6 antagonist-treated rats, but not vehicle-treated
controls, displayed significant novel object preference with
a 4-h delay. After medial, but not dorsal, raphe lesions,
neither drug nor vehicle animals displayed novel object
preference with a 4-h delay, but both groups showed good
performance with a 1-h delay. This suggests that the medial
raphe lesion had indeed specifically disrupted 5-HT6-
mediated enhancement of recognition memory. 5-HT6 antag-
onists have been shown to potentiate release of dopamine
(Dawson and Li 2003), glutamate (Dawson et al. 2000, 2001)
and acetylcholine (Hirst et al. 2006; Lieben et al. 2005;
Riemer et al. 2003), possibly indirectly via a reduction in
GABAergic tone (Marcos et al. 2006; West et al. 2009;
Doleviczenyi et al. 2008). This may explain why 5-HT6
antagonists are also able to reduce impairments in SOR
performance induced by cholinergic (1 h; Lieben et al. 2005)
or glutamatergic (1 min; Arnt et al. 2010) antagonism.

Cannabinoids

Cannabis use is highly prevalent among schizophrenia
patients, with one study reporting usage rates as high as
51% in first episode patients (Barnett et al. 2007). Some of
this usage may represent an attempt at self-medication to
reduce the impact of negative symptoms or antipsychotic
side-effects (Dixon et al. 1991; Krystal et al. 1999). Meta-
analyses of epidemiological studies, however, indicate that
cannabis usage itself may significantly increase the risk of
developing schizophrenia (Andreasson et al. 1987; Moore
et al. 2007), particularly among those who use cannabis in
adolescence (Arseneault et al. 2002). Whether cannabis
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usage ‘triggers’ schizophrenia de novo, or precipitates the
development of psychosis in individuals with a pre-existing
vulnerability to the disorder, is not clear.

The psychoactive constituent of cannabis is Δ9-
tetrahydrocannabinol (THC), which binds to the CB1 recep-
tor. Exposure to cannabinoid agonists has been shown to
impair SOR, although the severity of these impairments
differs across studies. Subchronic adolescent exposure to
THC or to a cannabinoid agonist impaired SOR in rats
subsequently tested as adults with a delay of up to 1 h (1 h,
Quinn et al. 2008; 30 min, Schneider and Koch 2003; but see
Higuera-Matas et al. 2009). Schneider and Koch (2003)
observed no impairment with a 2-h delay. Neither acute nor
subchronic THC treatment during adulthood impaired SOR
with a 1-h delay (Long et al. 2010; Quinn et al. 2008) but
chronic hippocampal infusion of the cannabinoid agonist
WIN 55,212-2 did impair performance (1 h; Barna et al.
2007). Post-sample infusion of WIN 55,212-2 into CA1 had
no effect in adult rats when the delay was 3 h, but did impair
performance with a 24-h delay (Clarke et al. 2008). Given
that pre-choice administration had no effect, Clarke and
colleagues propose that the cannabinoid agonist may block
consolidation processes required for the formation of long-
term memories. The impairments seen after pre-sample
administration in other studies suggest additional involve-
ment in encoding. Overall, however, the somewhat mixed
pattern of data is consistent with a modulatory, rather than
obligatory, role of the endocannabinoid system in SOR.

Interactions have been reported between the endocanna-
binoid system and manipulations considered to model

aspects of schizophrenia. The deleterious effects of isola-
tion rearing on SOR, for example, could be reduced by
chronic, but not acute, treatment with a CB1 antagonist
(1 h; Zamberletti et al. 2010). While the mechanism behind
this effect is unclear, Zamberletti and colleagues note that
cannabinoid receptors have previously been shown to
modulate dopaminergic transmission via effects on
GABAergic and glutamatergic synapses (Chiu et al. 2010;
van der Stelt and Di Marzo 2003). A chronic intermittent
PCP regime impaired SOR with a 1-h delay. The PCP-
induced deficits were exacerbated in rats that had received
chronic THC treatment as adolescents (Vigano et al. 2009),
consistent with an interaction between activation of the
endocannabinoid system and vulnerability to schizophrenia.

Genetically modified (GM) mice

With heritability estimates of approximately 80% (Sullivan
et al. 2003), schizophrenia undeniably has a strong genetic
component. Although SOR was initially developed for rats
(Ennaceur and Delacour 1988), it can also be used
successfully with mice (e.g. Messier 1997). It is therefore
a useful tool for phenotyping mouse models of schizophre-
nia based on altered expression of candidate susceptibility
genes. Many of the GM mice tested to date display
impaired SOR, although results can vary between labora-
tories, perhaps highlighting the interaction between geno-
type and small differences in environmental/testing
conditions or genetic background (Crabbe et al. 1999)

Table 4 Effects of 5-HT6 receptor antagonists on SOR

5-HT6 antagonist Species and strain Delay Effect on SOR Reference

SB-271046 L-H rat 4 h Improved King et al. 2004
Ro-046790 Improved. Improvement blocked by MK-801

Ro-046790 L-H rat 4 h Improved. Improvement blocked by medial raphe lesions King et al. 2009

Compound 9h Rat 24 h Improved Singer et al. 2009

Compound 18b Rat 48 h Improved Haydar et al. 2010

SB-271046 L-H rat 4 h Improved Kendall et al. 2011
Ro-046790 Improved

5-HT6 agonists (E-6801 and EMD-386088) also improved
performance

Ro-046790 L-H rat 1 min Reduced scopolamine-induced impairment Woolley et al. 2003

Ro-4368554 Wistar rat 24 h No significant effect Lieben et al. 2005
1 h Reduced impairments induced by scopolamine and

tryptophan depletion

Ro-4368554 L-E rat 4 h Improved Schreiber et al. 2007
Wistar rat 1 h Reduced scopolamine-induced impairment

SB-399885 S-D rat 24 h Reduced scopolamine-induced impairment Hirst et al. 2006

Lu AE58054 S-D rat 1 min Reduced subchronic PCP-induced impairment Arnt et al. 2010

S-D Sprague Dawley, L-E Long Evans, L-H Lister Hooded
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(Table 5). Mice heterozygous for a mutation in the
transmembrane domain (TM) of neuregulin 1 (NRG1), for
example, have been reported to be unimpaired with a 60-min
delay (Long et al. 2010) but impaired with a 10-min delay
(Duffy et al. 2010). This apparent discrepancy may reflect
the use of male mice in one study and females in the other,
as the effects of NRG1 disruption may be sex-specific
(Taylor et al. 2011; O'Tuathaigh et al. 2006). As is typical
among SOR studies, there were also differences in the testing
protocol used: Long et al. injected their mice with vehicle (or
THC, which did not affect SOR) 75 min prior to the SOR
test, whereas Duffy et al.’s animals did not experience
injection stress. Exploration levels in Long et al.’s mice were
also relatively low (less than 4 s per object), which may
reflect the fact that they were not habituated to the arena on
the days prior to testing (the mice received 30 min on the day
of testing itself). That aside, mice heterozygous for a
mutation in the EGF domain common to all NRG1 isoforms
were also unimpaired with a 24-h delay (Ehrlichman et al.
2009). Data from male and female animals were pooled in
the latter study.

Similar discrepancies exist for mice with mutations in
the dopamine catabolic enzyme, catechol-O-methyl trans-
ferase (COMT). Male and female mice with a heterozygous

deletion of COMT were significantly impaired in SOR with
a 5-min delay, while males but not females were impaired
with a 1-h delay (Babovic et al. 2008). In a subsequent
study using an apparently identical protocol, however, the
same group found no effect of sex and no impairment at
either delay (O'Tuathaigh et al. 2010). In the latter study,
the animals had received chronic vehicle injections for
20 days prior to the SOR test. One possibility therefore is
that injection stress may have increased arousal, which
might have interacted with the genotypes under investiga-
tion. Notably, a third study also attempted to test COMT
heterozygous and null mutant mice on SOR, but aborted
testing due to a confounding reduction in sample phase
object exploration in the mutant animals (Papaleo et al.
2008). Transgenic mice overexpressing the human COMT-
Val polymorphism, corresponding to the high activity form
of the enzyme, were impaired in SOR with a 1-h delay
(Papaleo et al. 2008). Interestingly, amphetamine amelio-
rated the SOR deficit in COMT-Val transgenic mice but
tended to impair performance in wild-type animals. This
appears broadly consistent with a report that, in humans,
amphetamine improves cognition (albeit, in this case,
executive function) in COMT-Val/Val genotype individuals,
but impairs performance in those with the lower activity

Table 5 Performance of genetically modified mice and their wild-type littermates on SOR

Targeted
gene

GM mice tested Delay Performance of GM mice on
SOR compared to wild-types

Reference

COMT wt, het, hmz ko (m+f) 5 min, 1 h, 4 h m+f het mice impaired with
5-min delay

Babovic et al. 2008

m het mice impaired with
1-h delay

No novel object preference in
any group with 4-h delay

COMT wt, het, hmz ko (m+f) 5 min, 1 h Unimpaired O’Tuathaigh et al. 2010

COMT wt, Val-tg (tg overexpressing human
COMT-Val polymorphism) (m)

1 h Impaired Papaleo et al. 2008

NRG1 wt, TM domain het (f) 1 h Unimpaired Long et al. 2010

NRG1 wt, TM domain het (m) 10 min Impaired Duffy et al. 2010

NRG1 wt, EGF domain het (m+f) 24 h Unimpaired Ehrlichman et al. 2009

Dysbindin wt, het, hmz ko (m) 5 min, 24 h Het and hmz ko mice impaired
with 5-min delay

Bhardwaj et al. 2009

No novel object preference in
any group with 24-h delay

DISC1 wt, DN-DISC1 (tg expressing dominant
negative mutant DISC1) (m+f)

1 h Unimpaired Ibi et al. 2010
DN-DISC1 impaired following
neonatal poly(I:C) treatment

Complexin 2 wt, hmz ko (m) Zero, 1 h Unimpaired Radyushkin et al. 2010

GSK3β wt, GSK3βS9A (tg expressing
dysfunctional GSK3β) (m+f)

4 h Impaired Dewachter et al. 2009

VGLUT1 wt, het (m+f) 1 h, 24 h m+f het mice impaired with a 24-h,
but not 1-h, delay

Tordera et al. 2007

wt wild-type, het heterozygous knockout, hmz ko homozygous knockout, tg transgenic, m male, f female, TM transmembrane, EGF epidermal
growth factor
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COMT-Met/Met genotype (Mattay et al. 2003). Overall, the
findings from studies of COMT mice on SOR are
consistent with an inverted U-shaped function between
cortical dopamine and cognitive function (e.g. Vijayraghavan
et al. 2007).

Mice with a dominant negative mutation in DISC1 were
unimpaired in SOR with a 1-h delay, unless they had been
treated as neonates with poly(I:C) to induce immune
activation. Poly(I:C)-treated DISC1 mutant mice were then
impaired relative to poly(I:C) treated wild-type controls (Ibi
et al. 2010), demonstrating an interaction between early
postnatal environment and underlying genetic susceptibility
to schizophrenia.

Neurodevelopmental models

Schizophrenia is widely held to be a neurodevelopmental
disorder, in part because adverse events occurring pre- or
perinatally increase the risk of developing the disease in
adulthood (see Meyer and Feldon 2010 for review). In
rodents, pre- or postnatal exposure to a variety of stressors
has been used to model the neurodevelopmental nature of
schizophrenia. With respect to brain development, the
gestational period of rats and mice corresponds approxi-
mately to the first and early-middle second trimester of
human pregnancy (Clancy et al. 2001), while the first ten
postnatal days in rodents correspond to the third trimester in
humans. The precise timing of environmental insults is
critical as manipulations occurring at different times will be
acting upon neuronal populations and neural circuits with
differing levels of maturity.

Some of the earliest environmental insults are those that
occur during pregnancy itself. In humans, activation of the
maternal immune system has been shown to increase
subsequent risk of schizophrenia in the offspring (Brown
et al. 2004; Brown 2006) and may contribute to the
increased incidence of schizophrenia among winter and
spring births (Hultman et al. 1999). Several animal models
of maternal immune activation have been developed,
including treatment with the bacterial cell wall endotoxin,
lipopolysaccharide (LPS), and poly(I:C), a synthetic
dsRNA. The adult offspring of mice injected with LPS on
embryonic day 8 (E8) were impaired in SOR with a 15-min
delay (Coyle et al. 2009). The offspring of mice injected
daily with poly(I:C) from E12 to E17 were also impaired in
SOR with a 1-h delay, when tested as adults (9–10 weeks)
but not when tested as juveniles (5 weeks). Both groups
were also tested with a 24-h delay, but neither group nor
their controls showed convincing novel object preference at
this longer interval (Ozawa et al. 2006). Conversely, the
adult offspring of mice injected with poly(I:C) on E12.5
displayed significantly enhanced SOR performance with a
5-min delay (Ito et al. 2010). However, the performance of

vehicle-treated controls in the latter study was surprisingly
poor for the delay used. Early postnatal immune activation
appears to have less impact on SOR. Treatment with LPS
on postnatal days (P) 7 and 9 had no effect when the
animals were tested as either juveniles or adults (1 h;
Jenkins et al. 2009), while daily treatment with poly(I:C)
from P2 to P6 left SOR similarly unimpaired in wild-type
mice tested as adults. As described previously, however, the
latter treatment regime did impair performance in DISC1
mutant mice (1 h; Ibi et al. 2010).

Obstetric complications, including the occurrence of
asphyxia or hypoxia (Dalman et al. 2001; Byrne et al.
2007) have additionally been linked to increased schizo-
phrenia risk. In rodents, both perinatal asphyxia and
postnatal hypoxia impaired SOR. Asphyxia on the last
day of gestation led to impaired SOR with a 1-h delay when
the animals were tested as adults (Simola et al. 2008;
Morales et al. 2010). Performance was intact with a 15-min
delay, arguing against a non-mnemonic explanation for the
deficit (Simola et al. 2008). Conversely, a single episode of
hypoxia–ischaemia (HI) on P7 led to impaired SOR in
adolescent rats, using a delay of only 5 min (Pereira et al.
2008). Since the volume of the hippocampus and the
striatum ipsilateral to the ischaemia-inducing arterial occlu-
sion was reduced in the HI animals, however, it could be
argued that these animals had in effect received partial
unilateral neonatal hippocampal lesions.

Neonatal lesions of the ventral hippocampus (NVHL)
have been proposed to mimic both positive and negative
schizophrenia symptoms, as well as cognitive deficits, in
the adult animal (Lipska et al. 1993, 2002; Sams-Dodd et
al. 1997). Consistent with a specifically developmental
effect, NVHL rats displayed impaired SOR performance
compared to sham controls when delays of either 30 min or
2 h were used, while rats that had received equivalent
lesions at age P42 were impaired only at the longer delay
(Hori et al. 2007). NVHLs have previously been shown to
induce cytoarchitectural abnormalities and neuronal loss in
perirhinal cortex (Bernstein et al. 1999), consistent with the
proposed contribution of this region to SOR.

While the postnatal period in rodents is relatively
hyporesponsive to stress (Levine et al. 1994), maternal
deprivation is considered to be one of the most potent
stressors for pups. Daily maternal deprivation from P2 to
P21 impaired SOR in rats with a 1-h delay (Aisa et al.
2008). The impairment was reduced by the glucocorticoid
receptor antagonist, mifepristone, and by the β-
adrenoreceptor antagonist, propanolol, implicating in-
creased activation of the HPA axis. Daily maternal
deprivation from P15 to P21—with or without social
isolation from littermates—also impaired SOR in mice
(24 h; Niwa et al. 2011). Both forms of isolation stress
increased plasma corticosterone levels, and the impairment
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in each case could be reduced by clozapine. The effects of
isolation stress are not limited to the early postnatal period,
however. Rats that were socially isolated during adoles-
cence (approximately P25 to 55) were also impaired in
SOR with a 1-h delay (Bianchi et al. 2006). For isolation
stress, as for many of the other neurodevelopmental
models, comparing the effects of a single stressor at
different time points might help to identify specific time
periods with particular vulnerability to that stressor, and
perhaps aid identification of the underlying mechanisms.

So how relevant is SOR to schizophrenia?

Predictive validity

It is clear that many pharmacological, genetic and environ-
mental manipulations thought to model aspects of CIAS
also impair rodent performance in SOR. Moreover, an
encouraging number of compounds have been reported to
reverse these impairments. If SOR is an effective screening
tool, then drugs that improve SOR in the laboratory should
also improve cognition in the clinic, and vice versa. Given
that no drug has yet been approved for the treatment of
CIAS, however, the predictive validity of SOR cannot be
said to be better or worse than that of any other rodent
behavioural task at present. Nevertheless, several classes of
compounds that reliably improve performance in SOR have
been examined in clinical trials with schizophrenia patients,
with mixed results.

Atypical antipsychotics, particularly clozapine, have
been shown to reverse the deleterious effects on SOR of
manipulations such as methamphetamine, MK-801 and
PCP. Dozens of studies have likewise demonstrated greater
improvement in cognition in schizophrenia patients given
atypical antipsychotics than in those receiving first gener-
ation drugs (see Keefe et al. 2007). While such findings are
encouraging, many of these clinical studies had methodo-
logical limitations such as being open-label, using small
sample sizes, or using high (side-effect inducing) doses of
older antipsychotics as a comparator. Unfortunately, the
results of the large independent multi-site CATIE study,
which compared the effects on cognition of four second-
generation antipsychotics and the first generation drug,
perphenazine, in more than 800 schizophrenia patients,
were less encouraging. While all drugs produced a small
improvement in cognition, the second generation antipsy-
chotics were no more effective than perphenazine. The
results of the CATIE study surprised many and, from the
current perspective, it is unfortunate that clozapine was not
included in the ‘cognitive’ phase of the study as it is
probably clozapine that has produced the most positive
findings in SOR. Nevertheless, it seems fair to say that

second generation antipsychotics are more effective at
improving SOR, and indeed most other rodent behavioural
tasks, than they are in the clinic.

Other promising candidates that have emerged from the
SOR literature include 5-HT6 antagonists and compounds
that target the glycine modulatory site on the NMDA
receptor. Several 5-HT6 antagonists have entered phase I or
II trials for CIAS, but the results are as yet unknown. D-
serine, which acts as a co-agonist at the NR1 subunit,
improved executive function in schizophrenia patients (Tsai
et al. 1998), although D-cycloserine had little effect on a
cognitive test battery (Goff et al. 2005). The GlyT1
inhibitor, sarcosine, also improved ‘global’ functioning
when given as an adjunct to risperidone but not clozapine
(Lane et al. 2006, 2010), but cognition was not examined in
detail.

Some of the most striking effects in SOR have been
obtained using drugs that modulate the cholinergic system.
Galantamine, a cholinesterase inhibitor that also has agonist
efficacy at the α7-nAChR, improved cognition in several
double-blind placebo-controlled trials (Lee et al. 2007;
Schubert et al. 2006; Buchanan et al. 2008, but see Dyer et
al. 2008). The improvements were small, however, and the
domains affected tended to differ across studies. Logically,
one might expect improvement in SOR to most clearly
predict an improvement in visual learning and memory.
Galantamine did produce an improvement in the Rey
Complex Figure Test (Lee et al. 2007), but it had no effect
on either the Brief Visuospatial Memory Test (BVMT)
(Buchanan et al. 2008) or the Object Memory Matching
Task (OMMT) (Schubert et al. 2006).

Donepezil—a more potent cholinesterase inhibitor than
galantamine but lacking α7-nAChR activity—has also been
shown to improve SOR (see above). However, donepezil
has been somewhat less convincing in clinical trials for
CIAS. While several small open-label studies did report
improvement in patients’ cognition using donepezil as an
adjunctive agent, the improvements were small and, once
again, tended to affect different cognitive domains in
different studies (Buchanan et al. 2003; MacEwan et al.
2001; Risch et al. 2001; Chung et al. 2009). Furthermore, a
number of double-blind placebo-controlled trials with larger
sample sizes observed no significant effect of donepezil on
any cognitive domain in schizophrenia (Friedman et al.
2002; Freudenreich et al. 2005; Fagerlund et al. 2007;
Keefe et al. 2008), including two that assessed visual
memory (Tugal et al. 2004; Akhondzadeh et al. 2008). It is
thus possible that donepezil’s lower efficacy in treating
CIAS compared to cognitive impairments in AD may
reflect a lesser contribution of cholinergic abnormalities to
these deficits in schizophrenia. This raises the important
point that the predictive validity of any cognitive test will
be limited by the quality of our rodent models, and the
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extent to which these reproduce the biological basis of
CIAS.

Nicotinic receptor agonists, particularly those targeting
the α7-nicotinic receptor, have produced some of the most
convincing improvements in rodent SOR. In schizophrenia
clinical trials, nicotine and nicotinic receptor agonists have
consistently enhanced performance, but mostly in tests of
sustained attention. Improvements were seen sometimes in
smokers (Depatie et al. 2002; Smith et al. 2006; Hong et al.
2011) and other times in non-smokers (Harris et al. 2004;
Olincy et al. 2006; Shiina et al. 2010), although varenicline—
an α4β2 and α7 receptor agonist licensed for smoking
cessation therapy—had no effect (Smith et al. 2009a).
Effects of nicotinic receptor agonists on memory have been
more variable. Varenicline improved verbal learning and
memory in schizophrenic smokers (Smith et al. 2009a),
although nicotine had no effect (Levin et al. 1996; Smith et
al. 2006; Harris et al. 2004). Conversely, nicotine enhanced
visuospatial working memory in schizophrenic smokers
(Smith et al. 2006) but varenicline did not (Smith et al.
2009a). Nicotine also reversed the deleterious effects of
haloperidol on delayed match-to-sample in schizophrenic
smokers (Levin et al. 1996). However, the α7-nAChR
agonist tropisetron failed to produce a significant improve-
ment in any memory domain within the CANTAB battery in
non-smoking patients (Shiina et al. 2010). The partial α7-
nAChR agonist DMXB-A was similarly ineffective among
schizophrenic non-smokers in the MATRICS Consensus
Cognitive Battery (Freedman et al. 2008), although practice
effects may have made an improvement more difficult to
detect. Relatively few studies have specifically examined
visual recognition memory. Nicotinic receptor agonists had
no effect on the BVMT (Freedman et al. 2008) or on
CANTAB pattern recognition memory (Shiina et al. 2010).
Nicotine did improve delayed recognition of abstract
geometric shapes in schizophrenic smokers (5-min delay;
Myers et al. 2004). However, the benefit was largely due to a
reduction in the false alarm rate, which may suggest an
improvement in sensory gating rather than in recognition
memory per se.

Overall therefore, some improvements in cognition have
been reported in schizophrenia clinical trials using agents
that also improve rodent performance in SOR. In human
clinical trials, the improvements tend to be smaller than
might be expected from the preclinical data; they also affect
differing domains across different studies. Direct compar-
ison with SOR is hindered by the fact that relatively few
clinical trials have specifically examined visual recognition
memory. Nevertheless, improvement in rodent SOR does
not appear to guarantee that an improvement will also be
detected in human visual recognition memory when it is
examined. This may in part reflect the fact that rodent
performance on SOR is influenced by many ‘non-specific’

factors, including perception, attention and motivation. It is
possible that some of the positive results in the SOR
literature may reflect improvements in these areas, rather
than the anticipated improvements in memory per se. The
latter would perhaps be more likely to translate into robust
improvements in clinical trials.

What does the SOR task measure?

The predictive validity of SOR will also be limited by the
extent to which it taps into components of cognition that are
impaired in schizophrenia. There is evidence for impaired
recognition memory in schizophrenia, with a number of
studies, including a large meta-analysis (Pelletier et al.
2005), suggesting that recognition of visual stimuli may be
particularly disrupted (e.g. Harvey et al. 2000; Doniger et
al. 2002; Heckers et al. 2000; Calkins et al. 2005). While it
is likely that deficits in perceptual processing contribute to
some of these impairments (e.g. Javitt 2009; Sullivan et al.
1992; Seidman et al. 2003), visual recognition memory
would still appear to be a pertinent cognitive domain to
assess in putative animal models of schizophrenia.

It could be argued, however, that the methodology in
SOR is quite different from the tasks used to assess visual
memory in humans. These tasks typically require subjects
to memorise abstract geometric shapes or, occasionally,
photographs. In addition, human studies generally assess
recognition from their subjects’ verbal reports, rather than
inferring recognition from the preferential exploration of
novel objects. It is worth noting, however, that a version of
the SOR task that uses preferential looking at novel stimuli
is routinely used to assess visual recognition memory in
human infants (and non-human primates) (Overman et al.
1993; Nemanic et al. 2004). The visual paired comparison
task (VPC) operates on the same principle as SOR, and
uses time spent looking at a novel versus familiar image as
the index of recognition. It has been suggested that the VPC
task can be used in adults to yield a non-verbal measure of
explicit or declarative memory (e.g. Manns et al. 2000;
Pascalis et al. 2004). McKee and Squire (1993) compared
amnesic MTL patients and controls, using photographs as
stimuli and delays ranging from 0.5 s to 24 h. Control
subjects preferentially viewed the novel images when the
delay was an hour or less, whereas amnesic patients were
impaired with a delay of only 2 min. Importantly, the
amnesic group showed intact performance with a 0.5-s
delay, suggesting that their impairment did not reflect gross
perceptual deficits or an altered response to novelty.

A related and critical issue is whether the human VPC or
rodent SOR tasks tap the appropriate component of
recognition memory. In human adults, recognition memory
could be considered to comprise two components: recol-
lective (episodic) memory, whereby a subject consciously
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recalls having encountered a stimulus previously, and
familiarity-based processes, whereby the feeling of having
previously encountered the stimulus may arise indepen-
dently of any conscious recollection of having done so
(Aggleton and Brown 2006; Yonelinas et al. 2010). In
human subjects, the relative contributions of episodic
versus familiarity-based processes can be disentangled to
some degree using the ‘Remember/Know’ paradigm (Tulving
1985; Gardiner 1988). Subjects are asked to give a
‘remember’ response if recognition is accompanied by
conscious recollection of an item’s previous presentation.
They are asked to give a ‘know’ response if recognition is
accompanied by a feeling of familiarity without any
conscious recollection. A number of studies have used this
paradigm with schizophrenia patients. The findings are
reviewed in Danion et al. (2007) and generally suggest that
in schizophrenia recollection is impaired to a greater degree
than familiarity. Consistent with this idea, there is some
suggestion in Pelletier et al.’s (2005) meta-analysis that
schizophrenia patients are more impaired in tests that require
them to give a ‘yes/no’ response to indicate recognition of
singly presented items, than in tests that require ‘forced
choice’ discrimination between old/new stimulus pairs. If, as
seems plausible, subjects can use relative familiarity to a
greater degree in forced choice than in yes/no formats, this
would seem to suggest that schizophrenia patients are
relatively more impaired in recollection-based processes than
in familiarity-based ones.

In summary, therefore, recollection and familiarity may
both contribute to performance on visual recognition
memory tasks, including VPC and SOR. While it is
possible that rodents also use explicit memory in SOR, it
appears more likely that they rely predominantly on
familiarity-based mechanisms. Since familiarity-based pro-
cesses may be affected rather less in schizophrenia than
recollection, this partial mismatch may explain why SOR
does not appear to have perfect predictive validity for
CIAS. One profitable area of schizophrenia-relevant re-
search might be to explore the use of versions of SOR that
may increase the requirement for the use of recollective
processes (e.g. Eacott et al. 2005).

Conclusions

As a rapid and technically straightforward test of memory,
SOR has many advantages that make it suitable for use in
examining the effects of a variety of manipulations on
cognition. By using a spontaneous behaviour, SOR avoids
confounding effects of stress or differences in motivation to
work for an appetitive reward, and is, in this sense, more
comparable to the tasks typically used to assess memory in
human subjects. There is no requirement for acquisition of

a complex rule, meaning that an index of memory can be
obtained from a single trial. Moreover, in comparison with
incremental learning tasks, it is relatively straightforward to
use SOR to examine the effects of a manipulation on
different stages of memory formation and recall. Finally,
the ability to manipulate ‘control’ performance by varying
the length of the delay or the amount of exposure to the
sample objects means that SOR can be used to detect both
procognitive and amnestic effects.

As with all tasks, however, there are also a number of
limitations. Differences in the apparent preference for a
novel object before and after a manipulation can sometimes
be confounded by differences in exploration levels before
and after the manipulation. These effects can be reduced by
use of the discrimination index [(novel−familiar)/(novel+
familiar)] to compare the performance of two groups, rather
than simply comparing the absolute length of time spent
exploring each object. It is also important to remember that
factors that affect preference for novelty will also affect
performance in SOR, even if they leave memory per se
unchanged. That said, testing at short as well as long delays
helps to mitigate against these and other non-mnemonic
interpretations. Lastly, the spontaneous behaviour measured
in SOR will, almost by definition, tend to be more variable
than a behaviour that has been learned across numerous
trials to reliably earn a reward or avoid a punishment.
Differences between laboratories in factors such as the
duration of the sample and choice phase, as well as the
delay, the previous experimental experience of the animals,
and whether an open arena or a closed maze is used, can all
make it more difficult to confidently compare results
between studies. A standardised, automated method would
help immensely in this regard.

While SOR is proposed to tap into the visual learning
and memory domain highlighted by MATRICS, it is likely
that the mechanisms available to humans and to rodents to
solve ‘visual recognition memory’ tasks are not identical.
Humans can use both explicit episodic recollection and
implicit familiarity while rodents may be biased toward the
latter. This partial mismatch in mechanism might explain
the apparent lack of predictive validity with respect to
CIAS. Nevertheless, several compounds that improve SOR
do also have some beneficial effects on cognition in
schizophrenia, although the correlation is far from perfect.
The predictive validity of SOR could perhaps be increased
further if a greater number of studies attempted to control
for non-specific drug effects on perception, attention and
motivation, via the use of multiple delays.

Studies using SOR have revealed that the effects of
many transmitter systems on recognition memory are
mediated via interaction with other transmitter systems.
Indeed, schizophrenia is itself increasingly recognised to be
a complex disorder involving disruption of multiple
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transmitter systems and the interactions between them.
SOR experiments have also demonstrated that while a drug
may preferentially target one receptor or transmitter system,
there are highly likely to be other ‘off-target’ effects. It is
important that these effects are acknowledged and studied,
partly to avoid the danger that ‘cognitive enhancing’
upregulation of one transmitter might lead to deleterious
effects on another. The silver lining to all this complexity
might, however, be the multitude of potential targets within
different transmitter systems that might, in theory, eventually
offer the possibility of cognitive enhancement.

To conclude, it is perhaps unrealistic to expect a test of
spontaneous behaviour in rodents to constitute a perfect
screening tool that will accurately and selectively identify
any and every drug that will treat CIAS. A better approach
is for researchers to take the time to use a multiple task
battery in which multiple domains of cognition are
assessed, thus providing controls for each other (Bussey et
al. 2011); SOR (preferably automated) could provide a
valuable element in such a battery. Moreover, it is not clear
that any other existing rodent behavioural task would fare
any better than SOR, and most of these lack SOR’s
methodological advantages. Finally, irrespective of its
translational relevance, SOR has contributed much valuable
information about the role of multiple transmitter systems
in memory, and the interactions between them.
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